Ex vivo adenovirus-mediated gene transfer to the adult rat heart.
نویسندگان
چکیده
OBJECTIVE The ability to transfer genes to adult myocardium may have therapeutic implications for cardiac transplantation. We investigated the feasibility of adenovirus-mediated transfer of marker genes LacZ and Luciferase, as well as the potentially therapeutic gene of the human beta2-adrenergic receptor in a rat heterotopic heart transplant model. METHODS Donor hearts were flushed with 10(12) total viral particles of one of three transgenes. Hearts were harvested at various time points after transplantation. LacZ-treated hearts were assessed by histologic staining and Luciferase-treated hearts were assayed for specific luminescence activity. Hearts treated with beta2-adrenergic receptor underwent radioligand binding assays and immunohistochemistry with the use of an antibody specific for the human beta2-adrenergic receptor. RESULTS LacZ hearts revealed diffuse myocyte staining as opposed to none within controls at 5 days. Luciferase hearts demonstrated a mean activity of 970,000 +/- 220,000 arbitrary light units versus 500 +/- 200 for the controls (p = 0.001). Total beta2-adrenergic receptor densities (fmol/mg membrane protein) for hearts that received the beta2-adrenergic receptor transgene at 3, 5, 7, 10, and 14 days after infection were as follows: right ventricle, 488.5 +/- 126.8, 519.4 +/- 81.8,* 477.1 +/- 51.8,* 183.0 +/- 6.5,* and 82.7 +/- 19.1; left ventricle, 511.0 +/- 167.6, 1206.4 +/- 321.8,* 525.3 +/- 188.7, 183.5 +/- 18.6,* and 75.9 +/- 15.2 (*p < 0.05 vs control value of 75.6 +/- 6.4). Immunohistochemical analysis revealed diffuse staining of varying intensity within myocardial sarcolemmal membranes. CONCLUSIONS We conclude that global overexpression of different transgenes is possible during cardiac transplantation and, ultimately, adenovirus-mediated gene transfer may provide a unique opportunity for genetic manipulation of the donor organ, potentially enhancing its function.
منابع مشابه
Efficiency, efficacy, and adverse effects of adenovirus vs. liposome-mediated gene therapy in cardiac allografts.
Virus- and nonvirus-mediated immunosuppressive cytokine gene therapy prolongs cardiac allograft survival in various nonfunctional heart transplant animal models, but its cardiac adverse effects have not been addressed. Recently, we developed a functional heterotopic heart transplant model in rabbits. For the first time, we were able to systematically compare the efficiency, efficacy, and advers...
متن کاملAdenoviral gene transfer of eNOS: high-level expression in ex vivo expanded marrow stromal cells.
Endothelial nitric oxide synthase (eNOS) is an attractive target for cardiovascular gene therapy. Marrow stromal cells (MSCs), also known as mesenchymal stem cells, hold great promise for use in adult stem cell-based cell and gene therapy. To determine the feasibility of adenoviral-mediated eNOS gene transfer into ex vivo expanded MSCs, rat MSCs (rMSCs) were isolated, expanded ex vivo, and tran...
متن کاملAdenovirus Endocytosis and Adenoviral Gene Transfer in Cardiovascular and Dermatologic Disease Models
Adenoviral gene transfer is a valuable tool in molecular biology research. In order to be an efficient and safe vector, adenovirus structure and infection mechanism as well as molecular biology of the used transgene need to be well studied. The aim of this study was to evaluate the role of adenovirus as a gene transfer vector from several perspectives. Adenovirus uses receptor-mediated endocyto...
متن کاملAdenovirus-mediated gene transfer to adult mouse cardiomyocytes is selectively influenced by culture medium.
BACKGROUND As development of cardiac gene therapies progresses, virally mediated genetic manipulations in cultured cardiomyocytes has become an important experimental approach. While adenovirus (Ad)-mediated gene transfer to neonatal and adult rat cardiomyocytes is well established, viral transduction of cultured adult mouse cardiomyocytes (AMCM) has been more difficult. This study was designed...
متن کاملCationic polymer and lipids augment adenovirus-mediated gene transfer to cerebral arteries in vivo.
Adenovirus-mediated gene transfer to blood vessels is relatively inefficient because binding of adenovirus to vessels is limited. The authors have reported that incorporation of cationic polymer and lipids with adenovirus augments gene transfer to blood vessels ex vivo. In this study, the authors determined whether complexes of adenovirus and cations improve efficiency of gene transfer in vivo....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of thoracic and cardiovascular surgery
دوره 115 3 شماره
صفحات -
تاریخ انتشار 1998